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The resul ts  a re  presented of an experimental  study of hydraulic res is tance  and high- 
f requency pulsations in p ressure  ar is ing during the process  of heat exchange at super -  
cr i t ical  p ressu re  of n-heptane as a function of wall temperature ,  flow rate ,  and length 
of the working channel. 

There  are  a number of works published in the cur ren t  l i terature  devoted to a study of heat exchange 
at supercr i t ica l  pa ramete r s  under conditions of forced fluid movement. The resul ts  of the published works 
do not present  a uniform picture. One author observed a sys tem in which the heat-exchange coefficients 
were considerably  higher than those calculated f rom the known equations of convective heat exchange [1-3], 
others observed sys tems  with poorer  heat exchange. The given deviations were explained either by the 
effect on the heat exchange of a change in physical propert ies  [4] or by the effect of f ree  convection [5]. 
The effect of f ree  convection on the decrease  in heat exchange in the supercr i t ica l  region was persuasively 
confirmed experimental ly  [6]. It must be assumed that the effect of the natural convection will develop 
for the most  part  at low current  velocities.  

The resul ts  of an experimental  study of the heat-exchange process  during forced movement of n- 
heptane over a wide range of cur rent  velocit ies (5-30 m / s e c )  at supercr i t ica l  p ressure  ( p / P c r  = 1.45) a re  
presented in this art icle.  The joint considerat ion of heat exchange, hydraulic res is tance,  and high f r e -  
quency p ressu re  pulsations a r i s ing  during the heat-exchange process  allows one to show the presence of 
principles demonstrat ing that the mechanism of heat exchange at supercr i t i ca l  parameters  as a function of 
the hydrodynamics of the cur ren t  has a varied nature. 

The experiments were conducted on 0Khl8N10T steel  tubes 2.02/2.52 mm in diameter  (the length 
of the heated sect ion was 40 and 100 ram), and on tubes 2 .4 /3 .0  mm in diameter  (length of heated section 
40 mm). Measurements  of the charac te r i s t i c s  of the heat exchange, hydraulic res i s tance  in the working 
section, and high-frequency p res su re  pulsations ar is ing during the heat-exchange process  were conducted 
synchronously during the experiments .  

The design of the apparatus is described in [7]. Measurement  of the hydraulic res is tance  was con- 
ducted using DM-6 and EPID instruments  with maximum scales  of 1, 2.5, and 6.3 atm, as well as a U- 
shaped m e r c u r y  differential manometer .  The experiments were conducted both with r is ing and dropping 
movement of the liquid. 

T h e  experimental  data obtained on the 2.02/2.52 mm tube a re  presented in Fig. 1 in the form of the 
dependence of the wall t empera ture  on the heat flux t w = f(q) and of the hydraulic res is tance  on the heat 
flux in relat ive coordinates A P / A P  0 = f (q /qm) for the same experiments.  

As seen f rom Fig. 1, at low current  velocit ies (5 m / s e c )  in the region of wall t empera tures  above 
t m the heat exchange is charac te r ized  by a sharp increase  in hydraulic res i s tance  (AP ~ q2.t) and an in- 
significant improvement in heat exchange. The increase in resistance can evidently not be explained by 
increased mass exchange between the boundary layer and center of the current. In these experiments 
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Fig. 2. Effect of forced movement of liquid on heat exchange (a) and hydraulic res is tance  (b) 
(v = 5 m / s e c ,  t l = 20~ d = 2.02/2.52 mm, I h = 40 mm): 1) r is ing movement; 2) dropping 
movement,  tw, ~ q, W / m  2. 

when the wail reached a tempera ture  t w _ t m high-frequency pressure  pulsations appeared with a funda- 
mental f requency of 4000 Hz. With an increased heat load the pulsation frequency dropped to 2000 Hz while 
the amplitude grew. The maximum amplitude of the p ressu re  oscillations was 1.67 �9 105 N / m  2. 

A change in the nature of the heat exchange was observed at a cur rent  velocity of 10 m / s e c .  Up to 
a wall t empera ture  of 500~ (at q = 5.8 �9 l0 G W / m  2) there is a lmost  no deviation f rom convective heat ex-  
change, although when the wall tempera ture  exceeded the value tm, just as with low current  velocit ies,  
there appeared high-frequency pressure  pulsations with a fundamental f requency of 4000 He, the amplitude 
of which grew with an increased heat load. The maximum amplitude of the p ressure  oscillations was 1.67 �9 105 N 
/ m  2. Upon reaching 400~ a sharp drop in wail t empera ture  to 350~ occurred,  which was accompanied by 
an abrupt change in the frequency of the p ressu re  oscillations f rom 4000 to 8000-10,000 Hz. 

With a fur ther  increase  in the heat load a "plateau" was observed charac te r i s t i c  of boiling; the im-  
p rovement  in heat exchange was accompanied by an increase  in the hydraulic res is tance  (AP ~ q1.~7). 

At a cur rent  veloci ty of 30 m / s e c  there charac te r i s t i ca l ly  appeared a considerable intensification in 
heat exchange with a lmost  no growth in hydraulic res i s tance  (AP ~ q0.2). The heat exchange in these ex- 
periments was accompanied by high-frequency pressure  oscillations with a broad spec t rum of frequencies 
(2000-20,000 Hz). The amplitude of the oscillations increased with growth in the heat load; its maximum 
value was 0.1 "105 N / m  2. 

Evidently, the mechanism of heat exchange at current  velocit ies of 10 and 30 m / s e c  differs.  This 
point of view is confirmed by experiments  at 15 m / s e c ,  in which fluctuations with time, charac te r i s t i c  
for  t ransi t ional  region, were observed in the wall tempera ture ,  hydraulic res is tance,  and high frequency 
p ressu re  pulsations accompanying the heat-exchange process .  

The nature of the heat exchange in tubes with a heated length of 100 mm was the same as for tubes 
of length 40 ram. As is seen, an increase  in current  veloci ty f rom 10 to 30 m / s e c  in this case led to a 
change in the heat-exchange mechanism. 

A s imi lar  picture was observed in the experiments  on tubes 2 .4 /3 .0  mm in diameter .  

The resul ts  of experiments  obtained with r is ing and dropping movements at  a current  velocity of 5 
m / s e e  a re  compared in Fig. 2. As is seen, the substitution of r is ing motion for dropping led to a change 
in the nature of the heat exchange. While for  upward motion a sharp increase  in hydraulic res is tance  with 
an insignificant improvement  in heat exchange was noted in the region of wall t empera tures  t w > tm, with 
downward movement  a change in the nature of the heat exchange was observed upon reaching a wall t em-  
perature  of 600~ s imi lar  to that noted with upward movement  at current  velocit ies of 10 m / s e c .  
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A control  s e r i e s  of exper iments  was conducted charac te r i z ing  the change in the p r e s s u r e  drop as a 
function of the heat  flux under conditions of sur face  boiling of the n-heptane at  a p r e s s u r e  of 10 �9 10 s N / m  2. 
It was found that the hydraul ic  r e s i s t a n c e  upon boiling is proport ional  to the heat  flux ra i sed  to the power 
0.75 (AP ~ q0.75), which is in good ag reemen t  with the data presented  in [8]. 

The exper imenta l  ma te r i a l  presented provides a bas i s  for  assuming  that a t  supe rc r i t i ca l  p r e s s u r e  
at values  of the wall  t e m p e r a t u r e  t w > t m and liquid t e m p e r a t u r e  tl < t m three  s y s t e m s  of heat  exchange 
can be dist inguished as  a function of the cu r r en t  velocity.  

At low cur ren t  veloci t ies  (v ~ 5 m / s e c )  the heat  exchange is cha rac t e r i zed  by a sharp  growth in 
hydraul ic  r e s i s t a n c e  with a negligible improvemen t  in heat  exchange. It is poss ible  that the growth in hy-  
draul ic  r e s i s t a n c e  is caused for  the mos t  par t  by an i nc rea se  not in m o l a r  t r a n s p o r t  but in the second co-  
efficient of v i scos i ty  de te rmined  by diss ipat ion of ene rgy  through expansion and contract ion of the medium 
[9] which takes  place in the boundary layer  at  supe rc r i t i c a l  p r e s s u r e s .  

An inc rea se  in cur ren t  ve loci ty  to 10 m / s e c  or the substi tut ion of downward movement  for  upward at  
5 m / s e c  led to a change in the nature  of the heat exchange. In this case  there  was observed a "plateau,~ 
cha rac t e r i s t i c  of boiling. The intensif icat ion of heat exchange may be caused by an inc rease  in mola r  
t r anspo r t  in a d i rec t ion  normal  to the heating sur face ,  indicated by the growth in hydraul ic  r e s i s t ance .  

The change in the nature  of the heat  exchange is evidently connected with the loss  in s tabi l i ty  of the 
hydrodynamics  of the cu r r en t  in the boundary layer .  A s i m i l a r  f o r m  has  been named ~pseudoboil~ng" [1]. 

At high cu r r en t  veloci t ies  (v > 15 m / s e c )  the intensif icat ion of the heat  exchange cannot be explained 
by inc reased  m o l a r  t r anspor t ,  s ince there  is cha rac t e r i s t i c a l l y  no change in hydraul ic  r e s i s t a n c e  with 
a growth in the heat  load. In this case  heat t r a n s f e r  evidently has another  mechan ism.  

The function of heat c a r r i e r  in a boiling liquid m a y  be provided by phonon-ca r r i e r s  of acous t ica l  
ene rgy  a r i s ing  as a consequence of t h e r m a l  osci l la t ions in the molecu la r  lat t ice which per iodical ly  f o r m  
and b reaks  up [10]. It can be anticipated that intensif icat ion of heat  exchange in the region of high cur ren t  
ve loci t ies  is explained to a cons iderable  extent by a drop in the t he rma l  r e s i s t ance  of the boundary layer  
because  of supp lementa ry  heat  t r a n s f e r  by p h o n o n - c a r r i e r s  of acous t ica l  energy.  

It should be noted that the explanation of this f o r m  of heat  exchange presented in this a r t i c l e  is s t i l l  
insuff icient ly c lear .  Fur the r  study of the mechan i sm of heat  exchange will evidently allow one to p resen t  
m o r e  indications of the val idi ty  of the mechan i sm given. 

t w is  the 
t l is  the 
t m is the 
q is the 
qm is the 
P is the 

P e r  is the 
~ P  is the 
AP0 is the 
v is the 
d is the 
l h is  the 

NOTATION 

wall temperature; 
liquid temperature at the tube entrance; 
temperature of the heat capacity maximum; 
heat flux; 
heat  flux at t w = tm;  
p r e s s u r e  in the working section; 
c r i t i ca l  p r e s s u r e ;  
p r e s s u r e  drop in the working section;  
p r e s s u r e  drop a t  q = 0; 
cu r ren t  velocity;  
tube d iamete r ;  
length of the heated section. 
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